Microtensile bond strength of resin-based composites to Ti–6Al–4V

Carlos A. Fernandes, José C. Ribeiro, Brian S. Larson, Estevam A. Bonfante, Nelson R. Silva, Marcelo Suzuki, Van P. Thompson, Paulo G. Coelho

Article history:
Received 20 August 2008
Received in revised form 23 November 2008
Accepted 26 November 2008

Keywords:
Indirect composite
Bonding
Microtensile bond strength
Titanium alloy

Abstract
Objective. The purpose of this study was to determine the microtensile bond strength of various resin composite/adhesive systems to alumina particle abraded Ti–6Al–4V substrate after aging for 24 h, 10 days, and 30 days in distilled water at 37 °C.

Methods. Four laboratory resin composite veneering systems (Gradia, GR; Solidex, SOL; Ceramage, CER; and Sinfony, SF) were bonded to 25 mm diameter machined disks of Ti–6Al–4V with their respective adhesive and methodology, according to the manufacturer’s instructions. Microtensile bars of approximate dimensions 1 mm × 1 mm × 6 mm were prepared for each resin composite/adhesive system. After cutting, groups (n = 12) from each adhesive system were separated and either stored in water at 37 °C for 24 h (baseline) or aged for 10 or 30 days prior to loading to failure under tension at a cross head speed of 1.0 mm/min. Failure modes were determined by means of scanning electron microscopy (SEM). Statistical analysis was performed through one-way ANOVA and Tukey’s test at 95% level of significance.

Results. Significant variation in microtensile bond strength was observed for the different systems and aging times. SOL and GR showed the highest mean bond strength values followed by SF and CER at baseline. Aging specimens in water had an adverse effect on bond strength for SOL and CER but not for the SF and GR groups.

Significance. In vitro bond strength of laboratory resin composites to Ti–6Al–4V suggests that strong bonds can be achieved and are stable for certain systems, making them useful as an alternative for esthetic fixed prosthetic restorations.

© 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The use of titanium and its alloys for cast restorations and fixed partial denture frameworks has increased substantially over the last years. This trend can be mainly attributed to the development of casting technology for titanium alloys, such as new casting machines and investment materials and the extensively reported advantages of titanium over other base metal alloys [1–3]. Also, excellent biocompatibility, high strength to weight ratio, low density, high corrosion resistance and low cost compared to noble metals are attractive properties which have favored the application of titanium alloys in dental materials.
prosthetic restorations [4–12]. However, problems with porcelain bonding have been reported when titanium is used in metal–ceramic restorations as thick and non-adherent layers of titanium oxide are formed at the high temperatures used for porcelain fused to metal (PFM) technique [13–15]. For this reason, special low fusing porcelains have been developed [12,13,15,16]. Resin composite veneering on titanium castings has been considered as an alternative for esthetic anterior restorations [1].

Metal–composite restorations have long been used as an alternative to PFM restorations [17–19]. Indirect light-cured composite resins have been extensively used in tooth restoration because they can provide acceptable aesthetics, wear resistance similar to tooth structure, and are easy to manipulate in the laboratory and to repair [20–23]. However, durable bonding between composite resins and metal frameworks has been a challenge. Years ago, macro- or micro-mechanical retention on the metal substructures such as beads, loops and pits, or sandblasting and etching, were the only mechanisms for bonding composite materials to metallic substrates. However, recent developments resulting in chemical bonding have been achieved [20,21,24,25], including silicoating systems and functional monomers systems [2,20,23,24]. The former covers the metal surface with a thin layer of silica and is followed by a bi-functional silane-coupling agent which bonds the silanol-groups of the silica layer with monomers of the composite [24,26–28]. The latter utilizes organic sulphur and phosphoric acids (thiophosphate derivatives) that bond to the oxides of the metal surface. These monomer acids are dissolved in solvents or in methacrylate-based liquids to bond to the composites [6,19,23,29,30].

Several studies have shown that silicoating and functional monomer systems improve the composite-to-metal bond strength with noble and non-noble dental alloys [17–20,23,26,28,30] and with titanium and its alloys [1–3,28,31–33]. However, the stability of composite–titanium bond is still questionable. While studies have shown that shear bond strength results were considerably affected by thermal cycling or long-term water storage [2,6,24,34–41], other studies have demonstrated that a number of the composite/adhesive systems evaluated under various metal surface conditioning methods exhibited considerably high and durable bond strength values after thermocycling [20,23,25,30].

Such controversial and limited results concerning adhesive performance between indirect composite and titanium alloys has led to the lack of an informed design rationale for bonding composite materials to titanium alloys [1,2,35]. The current study evaluated the bond strength of four commercially available indirect composite/adhesive systems to a titanium alloy (Ti–6Al–4V) subjected to different times of water storage. The bond strength was determined by microtensile testing and

<table>
<thead>
<tr>
<th>Table 1 – Materials utilized in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Ceramage™</td>
</tr>
<tr>
<td>Gradia™</td>
</tr>
<tr>
<td>Synfony™</td>
</tr>
<tr>
<td>Solidex™</td>
</tr>
</tbody>
</table>
Failure mode analysis was performed by SEM to investigate potential weak links in the resin composite–titanium interface/interphase.

2. Materials and methods

Specific information concerning the materials used for this study is presented in Table 1. For the present study, 25 mm diameter and 3 mm thick disks (n = 12, 3 for each material) of ASTM Grade V Ti-6Al-4V alloy (as-machined) were immersed in ethanol for 1 min in an ultrasonic cleaner (Accusonic, Patterson, Saint Paul, MN, USA), dried in air stream and sandblasted on the upper side with 50 μm grain-sized alumina using a grit-blower (Pony Sandblaster, Buffalo Dental, Syosset, NY, USA) for 30 s at a distance of 1.5 cm from each disk surface. Following sandblasting, the samples were again immersed in ethanol for 1 min in an ultrasonic cleaner and dried in air stream before receiving one of the following procedures prior to resin composite build-up:

- Ceramage™ (CER) (Shofu Dental Corp., San Marcos, CA, USA): ultrasonic bath with ethyl alcohol (5 min); application of two layers of proprietary ML Metal Primer (allowed to dry for 10 s between layers); application of a thin layer of Ceramage Pre-Opaque adhesive and light cured for 3 min with GC Labolight LV III (GC America Inc., Alsip, IL, USA).
- Gradia™ (GR) (GC America Inc., Alsip, IL, USA): air cleaning of disk surface; application of two layers of GC Metal Primer II (allowed to dry for 30 s between layers).
- Sinfony™ (SF) (Pentron Laboratory Technologies, Wallingford, CT, USA): ultrasonic bath with ethyl alcohol (5 min); tribochemical silica coating with Rocatec™ system (RocatectorDelta, 3M Espe, Seefeld, Germany); application of EspeSil™ (3M Espe, Seefeld, Germany) silane coupling agent and allow to dry for 5 min; metal coupler application (air dried).
- Solidex™ (SOL) (Shofu Dental Corp., San Marcos, CA, USA): ultrasonic bath with ethyl alcohol (5 min); tribochemical silica coating with Rocatec™ system; application of proprietary Solidbond silane coupling agent (allowed to air dry); application of a thin coat of Solidex Opaquer liquid adhesive and light cure for 1 min with Dentacolor XS (Heraeus-Kulzer GmbH, Wehrheim, Germany).

Subsequently, resin composite build-up was completed by applying small increments, including the opaque, body, and incisal material for each system according to the manufacturer’s recommendation (Table 1). Customized circular molds (25 mm in diameter and 6 mm height) were used for inserting the composite on titanium disks and placement of the specimens in its respective curing unit. The final disk-shaped specimens of approximately 9 mm height (3 mm of titanium and 6 mm of composite) (Fig. 1) were polished with 300-grit SiC paper to achieve uniform thickness throughout the specimens and then stored in distilled water at 37 °C.

The specimens were then cross-sectioned perpendicular to the composite–titanium interface with a diamond wafering blade (Buehler series 20HC N° 11-4215) mounted on an IsoMet® low speed diamond saw (Buehler, Lake Bluff, IL, USA) under copious water, to produce a series of rectangular beams with mean cross-sectional area of ~0.85 mm², according to the “non-trimming” technique for microtensile bond strength testing [36] (Fig. 2). After exclusion of the beams from the peripheral areas of the disks, 36 bars were randomly selected from each group of 3 disks and then divided into three subgroups for each material (n = 12). Subgroup 1 was tested for microtensile bond strength (μTBS) at baseline (24 h). Subgroup 2 was aged in distilled water at 37 °C for 10 days and subgroup 3 was aged for 30 days before bond strength testing.
Table 2 – Microtensile bond strength testing results.

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean μTBS (£±95% confidence interval) (MPa) (three disk specimens per group)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subgroup 1 (baseline)</td>
</tr>
<tr>
<td>CER</td>
<td>19.18 (3.85)b</td>
</tr>
<tr>
<td>GR</td>
<td>29.96 (5.74)a,b</td>
</tr>
<tr>
<td>SF</td>
<td>20.90 (3.46)b</td>
</tr>
<tr>
<td>SOL</td>
<td>38.32 (3.65)a</td>
</tr>
</tbody>
</table>

Letters indicate statistical significance. Groups with the same letter denote no significant difference (p > 0.05).

Each specimen had the cross-sectional area measured with a digital caliper (Mitutoyo, Tokyo, Japan). Beams were individually attached to the flat grips of a Bencor Multi-T testing device (Danville Engineering, San Ramon, CA, USA) using cyanoacrylate adhesive (Krazy Glue Gel, Advanced Formula-Elmer’s Products, Inc., USA) (Fig. 2). The bars were loaded to failure under tension at a crosshead speed of 1.0 mm/min using a tensile testing machine (TSD 500, Chatillon-Ametek, Agawam, MA, USA). The bond strength data were converted to MPa and analyzed by one-way ANOVA (n = 3). Multiple comparisons between groups were evaluated by Tukey test at a 95% level of significance.

The mode of failure of each specimen was determined using a Stereomicroscope (Olympus SZX – ILLB100 – Olympus Optical Co. Ltd., Tokyo, Japan). The fracture modes were classified according to the following categories: (1) adhesive at opaque–metal interface; (2) adhesive at opaque–composite interface; (3) cohesive in composite; (4) cohesive in metal; (5) mixed fractures. SEM analysis was performed in selected samples for higher magnification verification of failure modes and evaluation of fractured surfaces. After sputter-coating with gold (Emitech K650, Emitech Products Inc., Houston, TX, USA), the specimens were observed under SEM (Hitachi S-3500N, Hitachi Science Systems Ltd., Japan).

3. Results

The results summary for the μTBS of the different composites under the various storage conditions are presented in Table 2.

One-way ANOVA showed significant differences among the μTBS values for the various composite systems and storage conditions. When comparing all composite systems at baseline (subgroup 1), SOL group showed the highest mean μTBS values compared to all other groups (p ≤ 0.05) but not significantly different from the GR group (p > 0.05). The latter presented higher bond strength than CER and SF groups, but the difference did not reach statistical significance (p > 0.05).

Regarding the influence of storage condition, the composite systems were affected differently. After 10 days of water storage, the GR group showed the highest bond strength compared to the other groups, followed by the SOL group. The SF group showed the lowest bond strength among the three storage groups.

Fig. 3 – Representative scanning electron micrographs of the metal side of fractured specimens. (a) SOL specimen presenting a mixed fracture mode; (b) Ceramage specimens presented adhesive fracture mode for all subgroups; (c) Gradia sample fractured between the opaque layer and composite; and (d) Sinfony samples presented fractures between the opaque layer and composite for all subgroups investigated.
storage (subgroup 2), \(\mu \text{TBS} \) values of SOL and CER groups were significantly reduced (\(p \leq 0.05 \)) compared to their bond strength at baseline. Bond strength mean values of GR and SF groups were not affected by aging. In subgroup 2, SOL, GR, and SF showed significantly higher \(\mu \text{TBS} \) values than CER (\(p \leq 0.05 \)), but not significantly different from each other (\(p > 0.05 \)).

When the specimens were stored in distilled water for 30 days (subgroup 3), only SOL and CER groups exhibited lower \(\mu \text{TBS} \) values than their respective subgroups 1 and 2. GR and SF groups were not affected by aging time and showed significantly higher bond strength values than SOL and CER groups. GR and SF did not have significantly different mean bond strength from each other within subgroup 3 (\(p > 0.05 \)).

The scanning electron micrographs of the metal side of the fractured specimens showed that SOL groups had 50% of fractures between the opaque layer and metal (type 1), 20% of cohesive fractures in composite (type 3), 20% of mixed fractures (Fig. 3a) and 10% of adhesive fractures between opaque layer and composite (type 2). CER groups exhibited type 1 fractures in all specimens observed (Fig. 3b). GR groups presented type 2 fractures (Fig. 3c). SF groups presented cohesive failures of type 3 for all subgroups (Fig. 3d).

4. Discussion

Metal–composite restorations have not been well accepted generally due to what has been perceived as an insufficient ability to bond resin to metal castings [1]. However, several systems have been developed over the last two decades in order to improve the bond strength of composites to metals, including titanium. These systems involve treatment of titanium surface to render it more reactive to bonding agents either by coating the metal surface with silicate (enabling bonding through a silane coupling agent) or by conditioning the metal surface with organic acids in solvents or embedded in methacrylate-based liquids that bond to the titanium oxides and to the resin composites [2,23,25].

The current study evaluated four indirect composite and adhesive systems employing different methods of metal treatment to enhance bonding to Ti–6Al–4V alloy. The \(\mu \text{TBS} \) tests showed that at baseline all of the composite systems exhibited bond strength values to Ti–6Al–4V that exceeded the 15–20MPa level (Table 2). These range of values have been suggested by in vitro studies as adequate for resisting masticatory forces [1,2,24,42,43]. However it is desirable that this level should be maintained or preferably surpassed after water storage since these systems will be subjected to the oral environment during function. Such results were only achieved with GR and SF groups, which were not affected by water aging.

The \(\mu \text{TBS} \) results suggest that bond strength between GR and SF to titanium alloy was effective and resistant to hydrolysis after 30 days of water storage. These two systems employ different methods for the treatment of titanium. GR system employs a methacrylate thiophosphoric acid (GC Metal Primer IT™) for metal surface treatment. This dual functional primer has shown to be effective for bonding composites to titanium alloys in several studies [2,3,6,19,24,25,30,31,44], which are in agreement with the present work. The SF system utilizes tribochemical silica coating and a silane coupling agent (Rocatec™ and EspeSil™) to create a bond between the monomers of the composite and the silica layer on the titanium surface. Previous studies have reported that silicoating promotes a high and durable bond between titanium and composites [2,24,32,33].

The results of the present study are in partial agreement with these findings, since SOL decreased bond strength after aging.

In the CER system, a proprietary metal primer (ML Primer) is employed for titanium surface conditioning. The specific composition of this primer is not described by the manufacturer and refers to a phosphonate monomer and a thioacetic acid. These constituents may be substantially different from Metal Primer IT™ used in GR system [2,3,30]. Thus, differences in chemical composition and perhaps concentration may account for the different bond strength between the two systems to titanium since this bond is based on the interaction of the organic acid with the oxides of the titanium surface [24,25].

The titanium surface in SOL groups was treated in the same way as for SF groups, with silica coating (Rocatec™) and silane coupling agent. However, instead of EspeSil™ used in SF, the silane agent used for SOL system was Solidbond, a proprietary silane provided in the Solidex kit. The composition of this silane agent is not described by the manufacturer, while EspeSil™ is a 10% solution of 3-methacryloyloxypropyltrimethoxy-silane in ethanol [45]. Matinlinna et al. [45–47] have demonstrated that commercial dental silanes show differences in chemical composition, pH, solvent system and silane concentration that can provide different bond strengths to titanium surfaces. This may explain why \(\mu \text{TBS} \) values of SOL groups were substantially different from the SF groups, being more prominently affected by water aging.

Fractographic analysis of GR and SF specimens revealed that none of the fractures occurred at the interface between opaque layer and titanium, which suggests that the bond strength between these two substrates was high enough to resist the tensile stress applied in \(\mu \text{TBS} \) test. This interface is considered the critical link in metal–composite bonding since it joins two essentially dissimilar materials together; an inorganic metallic substrate and an organic polymeric substrate [28,33,46,48]. Thus, the absence of fractures at this interface suggests an effectiveness of bonding between these substrates and is coherent with the bond strength results of GR and SF groups, which exhibited the highest \(\mu \text{TBS} \) mean values after 30 days of water aging. On the other hand, the fracture modes of CER and SOL, in all subgroups, were predominantly adhesive at the interface between opaque layer and titanium, indicating that interaction between these substrates seems to be the weak point with these systems. This is also in agreement with the bond strength results since CER and SOL were the systems with the highest reduction in \(\mu \text{TBS} \) mean values after water storage. Alternatively, condensation of the silane on the sur-
face may have resulted in a thick layer that is susceptible to hydrolysis [10]. Although shear testing is the most commonly used method to assess metal–composite bond strength, several studies suggest it can produce misleading results from high stress concentration within the substrates, leading to a high incidence of cohesive failures [36,42,49,50]. Tensile strength tests and in particular the microtensile testing method, has been considered to be more appropriate for bond strength evaluation since it allows a more uniform distribution of the stress, a reduction of the incidence of premature cohesive failures, and consequently a more realistic measurement of bond strength of the adhesive interface [25,36,51–53]. The use of microtensile testing in this study resulted in low occurrence of cohesive failures.

The present in vitro work suggest that the composite systems Gradia™ and Sinfony™ would be acceptable for achieving clinically high and stable bond strength to titanium alloy, surpassing the minimum level of 20 MPa for resisting masticatory forces [36]. These two systems were not significantly affected by water aging and may represent a viable alternative for metal–ceramic restorations on titanium with regard to adhesion. However, it should be noted that a minimum bond strength level for clinical long-term bond stability of composites to titanium has not yet been determined and further clinical research should be undertaken to investigate these materials.

5. Conclusions

Within the limitations of this experiment, the following conclusions could be made:

1. The resin composite adhesive systems exhibited significantly different bond strengths to titanium. All the systems showed high initial bond strength and water aging had an adverse effect on bond strength of CER and SOL, but did not affect GR and SF systems.

2. CER and SOL exhibited failures at the opaque–titanium interface, which is the weak-link of metal–composite bonding. For GR and SF systems, this interface resisted the tensile load and was not affected by water storage.

REFERENCES

