

The **REVOLUTIONARY METAL-FREE**CAD/CAM Material

CLINICAL USE AND APPLICATIONS

TRINIA® CAD/CAM discs and blocks are composed of a multi-directional interlacing of fiberglass and resin in several layers. TRINIA® is intended to be used by dental technicians and dentists for making copings, substructures or frameworks for permanent and transitional anterior or posterior crowns, bridgework, and substructures that can be either cemented or uncemented restorations, such as telescopic restorations.

Prosthetic Frameworks

Removable Prosthetics

Fixed Prostheses

TECHNICAL DATA

In order to meet the broad indications of clinical use, TRINIA® was designed with the appropriate mechanical suitability as well as appropriate aesthetic characteristics. The resulting product has high flexural and compressive strength.

DURABLE AND RESILIENT

393 MPa
2.7 %
18.8 GPa
169 MPa
347 MPa
339 MPa
26 KJ/m ²
125 HRR
63
92.5
1.68 g/cm ³
.03%
9.7 MPa m ^{1/2}
49 N/mm ²
18 MPa
10 MPa

^{*}With thermocycling using 3M™ RelyX™ Unicem Automix 2.

BIOCOMPATIBLE

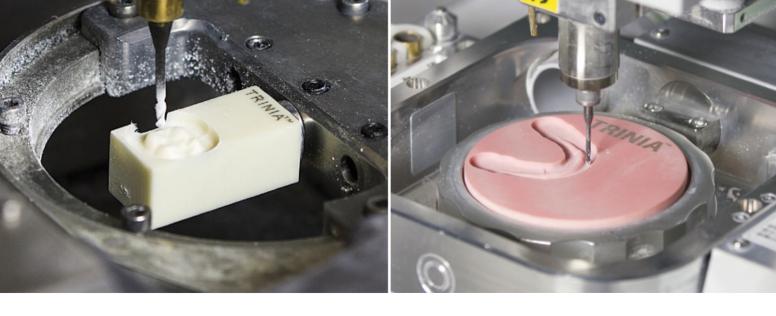
ISO 10993-3	Non-mutagenic	
ISO 10993-5	Does not induce cytotoxicity	
ISO 10993-6	Non-irritant	
ISO 10993-10	Non-sensitizer	
ISO 10993-11 No adverse physical symptoms after injection		

SELECTED RESEARCH

A. C. Maquee, P. Perpetuini, E. A. Bonfante, J. C. Mitchell, Photoelastic Analysis of Fiber-Reinforced Composite Implant Supported Dentures, Midwestern University Poster Presentation, Dec. 2022

Cheng, Y-C., Bergamo, E., Murcko, L., Hirayama, M., Perpetuini, P., Speratti, D., Bonfante, E., Fiber-reinforced composite partial fixed dental prostheses supported by short or extra-short implants: A 10 year retrospective study, Clin Implant Dent Relat Res. 2022; 1-8. doi:10.1111/cid.13133

Bergamo, E., Yamaguchi, S., Lopesa, A., Coelho, P., Araújo-Júniora, E., Benalcázar Jalkha, E., Zahouia, A., Bonfantea E., *Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatique analyses*, Dental Materials, September 2021


Ewers, R., Marincola, M., Perpetuini, P., Bergamo, E., Chen, YC., Bonfante, E., Severely Atrophic Mandibles restored with Fiber-Reinforced Composite Prostheses Supported by 5.0mm Ultra-short Implants present high survival rates up to Eight Years, Journal of Oral and Maxillofacial Surgery, September 2021

Salgado-Peralvo, A., Salgado-García, A., Peña-Cardelles, J., Kewalramani, N., Gómez-Polo, M., *Metal-Free, Implant-Supported Full-Arch Rehabilitation*, Dentistry Today Vol. 40 No. 5, January 2021, Pages 46-51

Magee, A. C., Perpetuini, P., Bonfante, E. A., Mitchell, J. C., *Photoelastic Analysis of Fiber-Reinforced Composite Implant Supported Dentures*, Midwestern University Research Day, April 22, 2021

Bergamo, E., Yamaguchi, Y., Coelho, P., Lopes, A., Lee, C., Bonfante, G., Jalkh, E., Araujo-Júnior, E., Bonfante, E., *Survival of implant-supported resin-matrix ceramic crowns: In silico and fatigue analyses*, Dental Materials, January 2021

Wagner, F., Seemann., R., Marincola, M., Ewers, R., Fiber-reinforced resin fixed prostheses on four short implants in severely atrophic maxillae: 1-year results of a prospective cohort study, J Oral Maxillofac Surg. 2018

CAD/CAM RECOMMENDATIONS

TRINIA® is available in 98mm circular discs, 89mm D-shaped discs, and 40mm and 55mm blocks. TRINIA® can be milled on most leading wet or dry milling systems following appropriate milling strategies. The usage of nano-diamond burs is essential for successful milling.

- Eclipse design for bars
- Minimum 0.7mm wall thickness
- Minimum 7.0mm² connector
- Maximum 18mm extension

REVOLUTIONARY METAL-FREE CAD/CAM MATERIAL

- Metal-Free
 - Biocompatible
- DurableLightweight

Part No.	Description		
612-115	TRINIA® Disc	Ivory	98mm x 15mm
612-125	TRINIA® Disc	Ivory	98mm x 25mm
615-115	TRINIA® D-Shape	lvory	89mm x 71mm x 15mm
613-115	TRINIA® Block (2)	lvory	55mm x 19mm x 15mm
614-115	TRINIA® Block (2)	lvory	40mm x 19mm x 15mm
612-215	TRINIA® Disc	Pink	98mm x 15mm
612-225	TRINIA® Disc	Pink	98mm x 25mm
615-215	TRINIA® D-Shape	Pink	89mm x 71mm x 15mm

